CUDA Programming

I was invited to attend a CUDA workshop, this event was promoted by DIA PUCP. Thanks to the professor, Dr. Manuel Ujaldon, who trained us for about 12 hours using C. We use the cloud of NVIDIA to practice and we do exercises to optimise  vector functions. Concepts of register, blocks, kernel and algorithms like compute bound and memory bound, memory shared, tiling, GPU/CPU technology, CUDA software (v6 and v6.5), which are compatible with CUDA hardware: Tesla(2008 – v1,2,3 with 8 cores), Fermi (2010 – v1,2 with 32 cores), Kepler(2012 – v3 and 3.5 with 192 cores) and Maxwell(2014 – v5 with 128 cores) and Pascal architecture for future.

Screen Shot 2014-10-09 at 3.23.00 PM

We started with this device:

CUDA Device Query (Runtime API) version (CUDART static linking)
Detected 1 CUDA Capable device(s)
Device 0: “GRID K520”
  CUDA Driver Version / Runtime Version          6.0 / 6.0
  CUDA Capability Major/Minor version number:    3.0
  Total amount of global memory:                 4096 MBytes (4294770688 bytes)
  ( 8) Multiprocessors, (192) CUDA Cores/MP:     1536 CUDA Cores
  GPU Clock rate:                                797 MHz (0.80 GHz)
  Memory Clock rate:                             2500 Mhz
  Memory Bus Width:                              256-bit
  L2 Cache Size:                                 524288 bytes
  Maximum Texture Dimension Size (x,y,z)         1D=(65536), 2D=(65536, 65536), 3D=(4096, 4096, 4096)
  Maximum Layered 1D Texture Size, (num) layers  1D=(16384), 2048 layers
  Maximum Layered 2D Texture Size, (num) layers  2D=(16384, 16384), 2048 layers
  Total amount of constant memory:               65536 bytes
  Total amount of shared memory per block:       49152 bytes
  Total number of registers available per block: 65536
  Warp size:                                     32
  Maximum number of threads per multiprocessor:  2048
  Maximum number of threads per block:           1024
  Max dimension size of a thread block (x,y,z): (1024, 1024, 64)
  Max dimension size of a grid size    (x,y,z): (2147483647, 65535, 65535)
  Maximum memory pitch:                          2147483647 bytes
  Texture alignment:                             512 bytes
  Concurrent copy and kernel execution:          Yes with 2 copy engine(s)
  Run time limit on kernels:                     No
  Integrated GPU sharing Host Memory:            No
  Support host page-locked memory mapping:       Yes
  Alignment requirement for Surfaces:            Yes
  Device has ECC support:                        Disabled
  Device supports Unified Addressing (UVA):      Yes
  Device PCI Bus ID / PCI location ID:           0 / 3
  Compute Mode:
     < Default (multiple host threads can use ::cudaSetDevice() with device simultaneously) >
deviceQuery, CUDA Driver = CUDART, CUDA Driver Version = 6.0, CUDA Runtime Version = 6.0, NumDevs = 1, Device0 = GRID K520
Result = PASS

We must analyse if we use the strategy of fine-grain or coarse-grain. In our first example was so convenient because we do not need so much the use of memory. But, if we use coarse-grain, we sacrifice parallelism. Not so much blocks are available, then we do not have enough backups of blocks. E.g. 128×128 is equal to 2 elevated to 14, which is 16384 with 256 threads, with 64 blocks for each SMX. 16 blocks equivalent to 1 block for each SMX.

CUDA_PUCP

Thanks to Genghis Rios to organise this workshop. More pictures here>>>

IMG_5923 IMG_5956 IMG_5962 IMG_5914 IMG_5922

About Julita Inca

Ingeniero de Sistemas UNAC, Magíster en Ciencias de la Computación PUCP, OPW GNOME 2011, Miembro de la GNOME Foundation desde el 2012, Embajadora Fedora Perú desde el 2012, ganadora del scholarship of the Linux Foundation 2012, experiencia como Admin Linux en GMD y Especialista IT en IBM, con certificaciones RHCE, RHCSA, AIX 6.1, AIX 7 Administrator e ITILv3. Experiencia académica en universidades como PUCP, USIL y UNI. HPC researcher, a simple mortal, like you!
This entry was posted in Education, GNOME, GNU/Linux/Open Source, τεχνολογια :: Technology, Programming. Bookmark the permalink.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s